ASTM International - ASTM D4691-02(2007)

Standard Practice for Measuring Elements in Water by Flame Atomic Absorption Spectrophotometry

historical
Buy Now
Organization: ASTM International
Publication Date: 15 June 2007
Status: historical
Page Count: 6
ICS Code (Examination of water for chemical substances): 13.060.50
significance And Use:

Elemental constituents in water and wastewater need to be identified to support effective water quality monitoring and control programs. Currently, one of the most widely used and practical means... View More

scope:

1.1 This practice covers general considerations for the quantitative determination of elements in water and waste water by flame atomic absorption spectrophotometry. Flame atomic absorption spectrophotometry is simple, rapid, and applicable to a large number of elements in drinking water, surface waters, and domestic and industrial wastes. While some waters may be analyzed directly, others will require pretreatment.

1.2 Detection limits, sensitivity, and optimum ranges of the elements will vary with the various makes and models of satisfactory atomic absorption spectrometers. The actual concentration ranges measurable by direct aspiration are given in the specific test method for each element of interest. In the majority of instances the concentration range may be extended lower by use of electrothermal atomization and conversely extended upwards by using a less sensitive wavelength or rotating the burner head. Detection limits by direct aspiration may also be extended through sample concentration, solvent extraction techniques, or both. Where direct aspiration atomic absorption techniques do not provide adequate sensitivity, the analyst is referred to Practice D 3919 or specialized procedures such as the gaseous hydride method for arsenic (Test Methods D 2972) and selenium (Test Methods D 3859), and the cold vapor technique for mercury (Test Method D 3223).

1.3 Because of the differences among various makes and models of satisfactory instruments, no detailed operating instructions can be provided. Instead the analyst should follow the instructions provided by the manufacturer of a particular instrument.

This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements see Section 9.

Document History

June 1, 2017
Standard Practice for Measuring Elements in Water by Flame Atomic Absorption Spectrophotometry
1.1 This practice covers general considerations for the quantitative determination of elements in water and waste water by flame atomic absorption spectrophotometry. Flame atomic absorption...
September 1, 2011
Standard Practice for Measuring Elements in Water by Flame Atomic Absorption Spectrophotometry
1.1 This practice covers general considerations for the quantitative determination of elements in water and waste water by flame atomic absorption spectrophotometry. Flame atomic absorption...
ASTM D4691-02(2007)
June 15, 2007
Standard Practice for Measuring Elements in Water by Flame Atomic Absorption Spectrophotometry
1.1 This practice covers general considerations for the quantitative determination of elements in water and waste water by flame atomic absorption spectrophotometry. Flame atomic absorption...
January 10, 2002
Standard Practice for Measuring Elements in Water by Flame Atomic Absorption Spectrophotometry
1.1 This practice covers general considerations for the quantitative determination of elements in water and waste water by flame atomic absorption spectrophotometry. Flame atomic absorption...
January 10, 2002
Standard Practice for Measuring Elements in Water by Flame Atomic Absorption Spectrophotometry
1.1 This practice covers general considerations for the quantitative determination of elements in water and waste water by flame atomic absorption spectrophotometry. Flame atomic absorption...
Advertisement